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COHESIVE ZONE MODELS AND THE PLASTICALLY
DEFORMING PEEL TEST

I. Georgiou
H. Hadavinia
A. Ivankovic
A. J. Kinloch
V. Tropsa
J. G. Williams
Department of Mechanical Engineering,
Imperial College of Science, Technology and Medicine,
London, United Kingdom

The peel test is a popular test method for measuring the peeling energy between
flexible laminates. However, when plastic deformation occurs in the peel arm(s) the
determination of the true adhesive fracture energy, Gc, from the measured peel
load is far from straightforward. Two different methods of approaching this pro-
blem have been reported in recently published papers, namely: (a) a simple linear-
elastic stiffness approach, and (b) a critical, limiting maximum stress, smax,
approach. In the present article, these approaches will be explored and contrasted.
Our aims include trying to identify the physical meaning, if any, of the parameter
smax and deciding which is the better approach for defining fracture when suitable
definitive experiments are undertaken.

Keywords: Cohesive zone models; Fracture mechanics; Laminates; Peel tests; Plastic
deformation

INTRODUCTION

The peel test is a popular test method for measuring the peeling
energy between flexible laminates [1�3]. The simple single-arm form
is shown in Figure 1a, and the T-peel variant is illustrated in Figure 1b.
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For the former test method, the total energy input, G, is related to the
applied steady-state peel load, P, the width, b, of the specimen and the
peel angle, y, by

G ¼ P

b
ð1� cos yÞ; ð1Þ

and for the T-peel we essentially have two such specimens ‘‘back-to-
back,’’ each with y ¼ p

2 , such that

G ¼ 2P

b
: ð2Þ

FIGURE 1 Common peel test geometries. (a) Single-arm peel test, (b) T-peel
test.
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This value of G includes the adhesive fracture energy, Gc, and any
plastic work done in bending the peeling arm(s). The value of the
adhesive fracture energy, Gc, is assumed to be a ‘‘characteristic’’
property of the adhesive, or interface, and ideally independent of
geometrical details of the peel test such as the thickness, h, of the peel
arm and the peel angle, y. However, the value of Gc would, of course,
be expected typically to be dependent upon the test rate and tem-
perature, since we are dealing with viscoelastic materials.

When only elastic deformation occurs in the peeling arm there is no
energy dissipation, so that G ¼ Gc. However, in many cases, there is a
rather complex bending and unbending process, as shown, for y ¼ p

2 in
Figure 2a where the peeling arm is initially bent and then gradually
straightened as the peeling proceeds. A schematic diagram of the
bending moment, M=b, per unit width in the peel arm and the inverse
of the local radius, 1=R, of curvature at the peel front is shown in
Figure 2b and the area under the curve is the plastic-energy dissipated
in bending. When a nonwork hardening material is used for the peel
arm, the moments tend to the plastic limit,

Mp

b
¼ syh2

4
; ð3Þ

FIGURE 2 Plastic deformation. (a) 90� peel test, (b) moment-curvature
diagram.
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whereMp is the fully plastic moment, sy is the yield stress, and h is the
thickness of the peel arm, and for large values of the plastic-energy
dissipation:

G � 2
Mp

b
� 1
R

¼ syh2

2R
: ð4Þ

A crucial factor in the analysis is the root rotation, yo, illustrated in
Figure 3. This arises from stretching of the substrate peeling arm
before it debonds and reduces the plastic work done such that the
proportion of G going into plastic work, Gd, is [1]

Gd ¼ P

b
1� cosðy� yoÞ½ �; ð5Þ

i:e:, for y ¼ yo;Gd ¼ 0, and for yo ¼ 0;Gd ¼ G.
Considering now only the 90� peel test, and assuming yo to be small,

then

Gd ¼ P

b
1� yo½ �; ð6Þ

FIGURE 3 Root rotation.
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and the true adhesive fracture energy, Gc, is approximately given by

Gc ¼ G�Gd½ � þ
s2yh

2E
¼ yoGþ

s2yh

2E
; ð7Þ

where the term
s2yh
2E is the elastic energy release rate from the beam at

M ¼ Mp.
The value of yo is determined by the characteristic length of the

deformation, D, as shown in Figure 3, and is given by

yo ¼
D
R
; ð8Þ

and on substituting into Equation (7), using Equation (4) we have

Gc ¼
D
h

� �
� 2G

2

syh
þ
s2yh

2E
: ð9Þ

This is an approximate form but illustrates the importance of the
characteristic length of the deformation, D. More detailed analyses of
the plastic- and elastic-deformations, for both bilinear and power-law
work hardening peel arms, have been given elsewhere [1, 3] but are, in
essence, versions of Equation (9). However, these more detailed ana-
lyses are in the form of simultaneous nonlinear equations which
require numerical solutions. These solutions will be discussed later,
together with the various forms of D.

There are two different approaches for ascertaining the value of D:
(a) the linear-elastic stiffness approach, and (b) the critical, limiting
maximum stress, smax, approach. In the present paper, these approa-
ches will be explored and contrasted. Our aims include trying to
identify the physical meaning, if any, of the parameter smax and
deciding which is the better approach for defining fracture, when
suitable definitive experiments are undertaken.

THE DETERMINATION OF D

The Linear-Elastic Stiffness Approach

The most common solution for D comes from the beam on a linear-
elastic foundation approach which assumes a stiffness of ks such that
the stress, s; versus displacement, u, relationship for the cohesive
zone at the crack tip is as shown in Figure 4a [1, 5]. For this case

D
h

� �4

¼ E

3h

b

ks

� �
; ð10Þ
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FIGURE 4 Linear-elastic stiffness approach. (a) Linear stiffness curve, (b)
stiffness factors.
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and ks may be calculated for half the beam thickness and an adhesive
layer, as shown in Figure 4b. For the combined stiffness of a peel arm
of thickness h

2 (with a transverse modulus E2) and an adhesive layer of
thickness ha (and modulus Ea) we have

b

ks
¼ h

2E2
þ ha

Ea
;

and hence:

D
h

� �4

¼ 1

6

E

E2
1þ 2ha

h

E2

Ea

� �
; ð12Þ

which for the case when there is no adhesive layer, and again ignoring
shear effects, reduces to

D
h

� �4

¼ 1

6
: ð13Þ

It should be noted that Gc is given by the area under the stiffness
curve (see Figure 4a), so that

Gc ¼
s2max

2

b

ks

� �
ð14Þ

and

s2max ¼ 2Gc
ks
b

� �
: ð15Þ

Combining the above equations yields, for the linear-elastic stiffness
approach, the corresponding values of smax to be deduced for when the
adhesive layer is absent, or can be ignored:

smax ¼ 2
GcE

h

� �1=2

; ð16Þ

and with the adhesive layer included:

smax ¼ 2
GcE
h

1þ 2ha

h
E2

Ea

 !1=2

: ð17Þ

It is very important to note that in the linear-elastic stiffness
approach the term smax is not taken to be a material property and the
fracture process is controlled by ks and Gc. Indeed, any models which
simply assume such an elastic-stiffness approach to describe a cohe-
sive zone region at the crack tip do not make any assumptions of
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a critical, limiting maximum value of the stress, smax, for the crack tip
region. Thus, they all yield a single characteristic fracture parameter,
namely Gc. However, the corresponding maximum value of the stress,
smax, that results can be calculated from a knowledge of the value of
Gc, as shown above in Equations (16) or (17) as appropriate, but the
value so deduced is not considered to be a critical fracture parameter
nor a material property. This linear elastic-stiffness approach is the
form used in previous publications [1, 6] and is effectively the linear-
elastic fracture-mechanics (LEFM) approach with a single character-
ising parameter, Gc.

The Critical, Limiting Maximum Stress, smax, Approach

On the other hand, recent cohesive zone models [4, 7] have been
developed which propose a fracture criterion where two parameters
must be used to describe the fracture process: namely Gc and smax, as
shown in Figure 5. Here smax is assumed to be a critical, limiting
maximum value of the stress in the damage zone ahead of the crack
and is often assumed to have some physical significance. Such two-
parameter models allow deviations from LEFM to be described.

FIGURE 5 Critical, limiting maximum stress, smax, approach.
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A recent study [6] showed that a two-parameter, cohesive zone
model could be developed for different triangular forms of the stress
versus displacement separation law which is taken to describe the
physical characteristics of the cohesive zone. Hence, a critical value of
smax value could be prescribed, as shown in Figure 5. Now, because the
shape is not important, this is equivalent to the case shown in Figure 4
with a slope of (ks=b)I , which is given by

ks
b

� �
I

¼ s2max

2Gc
; ð18Þ

and hence

D
h

� �4

¼ 2

3

EGc

hs2max

: ð19Þ

Now, ks=b is not a predetermined property, but the term smax is con-
sidered to be so in this critical, limiting maximum, smax, approach.

It may be noted that when Equation (19) is used together with
Equation (9), we have a relation between G and the smax of the form

G

Gc
¼ smax

sy

� �1=4 31=8

e1=2y

G
_

Gc

" #5=4
1� G

_

Gc

" #0
@

1
A

1=2

; ð20Þ

where

G
_

¼
s2yh

2E
and ey ¼

sy
E

: ð21Þ

(It also should be noted that the equivalent relationship to Equation
(20) for the linear-elastic stiffness approach, using Equation (13), is

G

Gc
¼ 6

1
8

e1=2y

G
_

Gc

 !
1� G

_

Gc

 !" #1=2
; ð22Þ

where clearly the term smax is not involved.)

INCLUSION OF WORK-HARDENING EFFECTS

Theoretical

The above analyses all assume that the peel arm does not work-
harden, i:e:, it is an elastic perfectly plastic material. However, the
plastic bending may be modelled using large-displacement beam
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theory modified for plastic bending [1, 3]. The formulation of this
problem was given in detail in Kinloch et al. [1] for both linear and
power-law work hardening for the peel arm but was then evaluated
only for the former case. The power-law curve is taken to be of the form

s ¼ sy
e
ey

� �N

for e > ey;

s ¼ Ee for e � ey;

ð23Þ

where ey is the yield strain and is given by ey ¼ sy
E. The above is a very

useful and accurate representation for fitting the stress versus strain
curves of many materials.

A code, termed ‘‘ICPeel,’’ was next developed to solve the above
equations for the peel tests and, hence, deduce the value of Gd, and,
hence, ascertain the value of the true adhesive fracture energy, Gc.
This code was implemented using the commercially available ‘‘Math-
Cad’’ mathematical software program. The ‘‘ICPeel’’ code can be used
to deduce the value of Gc from the measured peel energy, G, using any
form of the D=hð Þ relationship. Thus, it can be used with either (a) the
simple linear-elastic stiffness approach (see Equation (12)) or (b) the
critical, limiting maximum stress, smax, approach (see Equation (19)).
(Although, it should be noted that somewhat more accurate versions of
these equations, which include shear effects and an extra correction
for plasticity taken from Williams and Hadavania [9], are used in the
‘‘ICPeel’’ program; see Appendix A.) For the former, simple linear-
elastic stiffness approach, the code also deduces the corresponding
value of smax from Equation (16) or (17), as appropriate; while for the
latter approach the value of smax is a required input parameter. Fur-
ther, the code may be used with either a bilinear (see Kinloch et al.
[1]), or the above power-law elastic-plastic material model to describe
the stress versus strain relationship for the peel arm. Also, either a
single-arm peel (for a given peel angle, y,) or a T-peel test can be
analysed. The code is available via our website [8]. The numerical
algorithm implemented in the ‘‘ICPeel’’ code is outlined below, while
all the equations used are listed in Appendix A for the different
material models.

It is convenient in the peel analysis to introduce a nondimensional
curvature variable, k, defined as

k ¼ R1

R
; ð24Þ

where R is the current radius of curvature of the peeling arm and
the subscript 1 denotes the condition for when the outer layers of
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the substrate arms first reach the yield criteria, i:e:, s h=2ð Þ ¼ �sy. In
the peel test the substrate arm goes through bending and unbending
cycles with the parameter k ranging from: (a) 0 < k < 1 for pure elastic
bending, (b) for elastic-plastic bending, (c) k00 < k < k0 during elastic
unbending, and (d) 0 < k < k00 during elastic-plastic unbending. The
maximum value for k occurs at the end of the bending process, where
k ¼ k0, at which stage the specimen arm exhibits the minimum radius
of curvature. The term k00 represents the limiting value of the non-
dimensional curvature during unbending, at which stage the outer
layers of the substrate arms first start undergoing reverse plastic
deformation. The corresponding bending stresses in the outer layers at
k ¼ k00 are equal and opposite to the maximum stresses reached in the
layer during bending at k ¼ k0. By knowing k0, the whole bending and
unbending history may be reconstructed analytically, i:e:, the moment-
curvature diagram may be determined and, hence, the dissipated
energy for plastic bending deduced. The core of the numerical algo-
rithm obtains the unknown parameter k0, such as to satisfy the global
energy balance in the peel test. The easiest route is to calculate the
value of k0, via the Area OFABC½ � from the moment diagram (see
Figure 2b):

Area OFABC½ � ¼ P 1� cos y� yoð Þ½ � ¼
Ee2ybh

2
� f2 k0ð Þ: ð25Þ

The function f2 k0ð Þ is determined by direct integration of the moments
resulting from the stress profiles in the arm cross-section during
bending and unbending. It is specific to the assumed plastic hardening
rule, and here we have used both a power-law rule and a linear-
hardening rule. The local peel angle of the arm, yo, when k ¼ k0,
remains the only unknown on the lefthand side of Equation (25). The
general expression for the local peel angle, y0, from Equation (8) may
now be rewritten to become

yo ¼
D
R

¼ D
R1

k0 ¼ 2
D
h

� �
eyk0: ð26Þ

If the linear-elastic stiffness approach is used for determining the
characteristic deformation length, D (see Equation (12)), the function
y0 k0ð Þ is linear. In the critical, limiting maximum stress approach (see
Equation (19)), the function is more complex and is described through
Gc k0ð Þ. In either case, Equation (26) illustrates that y0 is solely a
function of k0 and, hence, the Newton-Raphson method, implemented
in ‘‘Math-Cad’’ via its standard ‘‘root()’’ function, may be used to solve
Equation (25) numerically. After k0 has been found, all the other
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dependent variables can be calculated explicitly, e.g., the energy
dissipated during the bending and unbending process is given by:

Area OABC½ � ¼ Gdb ¼
Ee2ybh

2
� f1 k0ð Þ: ð27Þ

For both approaches, Equations (25) and (26) represent a closed,
nonlinear numerical system. In the case of the linear-elastic stiffness
approach, the solution for k0 is obtained with a single ‘‘root()’’ func-
tion call, since yo k0ð Þ is a known function of k0. However, in the
critical, limiting maximum stress approach, the root rotation, yo, is
also a function of the unknown variable Gc. This requires an itera-
tive solution procedure. At the start of the calculation, Gc is initi-
alised to G and is used to calculate a first estimate for yo k0;Gcð Þ.
With the Gc specified, the corresponding k0 can be obtained using the
‘‘root()’’ function. The calculated k0 is now used to update Gd using
Equation (27), from where the current Gc becomes Gc ¼ G�Gd. This
yields a new, improved estimate for yo k0;Gcð Þ. Within the iteration
loop, k0 gradually converges to a constant value and the rate of
change of Gd and Gc decreases significantly. The calculation stops
when changes in the adhesive fracture energy, Gc, are lower than a
prescribed convergence tolerance, i.e., DGcj j < 0:001. The computing
algorithm is very efficient; the results are typically obtained within
less than five iterations, for which the CPU time is on the order of a
second.

The Effects of Work Hardening and smax

To illustrate the effects of both work hardening, and the use of smax,
some hypothetical peeling results, using a single-arm 90� peel test, of
an aluminium-alloy strip bonded via an adhesive layer to a rigid
substrate, were theoretically explored. The peel arm was taken to
have the following values: h¼1mm, E¼69GPa, sy¼84MPa and
N¼0:22. The values of Gc were assumed to be in the range 700 to
1600 J=m2, which is representative of a typical structural adhesive.
The adhesive layer was assumed to have the values of ha¼0:4 mm and
Ea¼3GPa.

The linear elastic-stiffness approach (see Equation (12)) gives
D=h ¼ 1:4 and, for 700 < Gc < 1600 J=m2, these values in turn give
from Equation (17) corresponding values of 90 < smax < 140MPa. A
typical epoxy adhesive has a yield stress of about 50MPa, so these
values are sensible and indicate constraint factors, smax=sya, of 1.8 to
2.7, where sya is the uniaxial tensile yield stress of the adhesive.
However, for the linear elastic-stiffness approach, since the resulting
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value of smax is now ‘‘fixed,’’ no further exploration of the implications
of using this approach can be undertaken.

On the other hand, for the purposes of exploring the alternative
critical, limiting maximum stress, smax, approach in detail, the values
of smax may be varied more widely, keeping the value of Gc constant at
a value of 700 J=m2 or 1600 J=m2. Equation (20) was used for when
N¼0 and the ‘‘ICPeel’’ analysis, described above, was used for when
N¼0 and N¼0:22. Figure 6 shows G=Gc as a function of s1=4max, since
Equation (20) indicates linearity in this form for N¼0. This is con-
firmed, although the predictions of Equation (20) are somewhat dif-
ferent from the more accurate solutions (see the previous Theoretical
section) from the ‘‘ICPeel’’ analysis, which are shown as the solid lines.
As may be seen, from comparing the results for N¼0 and N¼0:22,
there is only a slight effect of work hardening in this case. As expected,
the measured peel force, P=b¼G, continues to increase as the value of
smax is increased, since more plasticity can be induced in the peel arm
as the value of smax is increased.

Figure 7 shows a hypothetical case in which the value of the yield
stress, sy, of the peeling arm is varied for constant values of smax and
Gc. The relationship betweenG and sy was again explored by obtaining

FIGURE 6 The effect of smax on total G for sy¼ 84MPa as a function of smax

as predicted from the critical, limiting maximum stress approach.
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predictions for this relationship by using Equation (20) (i.e., for when
N ¼ 0) and the ‘‘ICPeel’’ analysis for when N ¼ 0 and N ¼ 0:22. At low
sy values,G ! Gc since the plastic work in the peel arm decreases; and
at large sy values the system becomes increasingly elastic and again
G ! Gc. Thus, there is a maximum in the measured peel force,
P=b ¼ G, as function of sy and there exists a range of relatively high
values of sy where little variation in G may be observed. In this case,
there is quite a marked effect of work hardening.

Finally, using the same methodology as before, a very similar
situation pertains when the thickness, h, of the peel arm is varied for
fixed values of smax, sy, and Gc, as shown in Figure 8. Here, a non-
dimensional measure of h (i.e., ĜG=Gc) is plotted to the 5=8 power as
suggested by Equations (20) and (21), and this approximate solution is
very close to the computed results via the more accurate ‘‘ICPeel’’
analysis for N ¼ 0. However, work hardening has a strong effect at
relatively high thicknesses, since it increases the tendency to elastic
behaviour. At low thicknesses, h, of the peel arm, there is only a slight
effect and the computed values are lines with an intercept of unity.
Such variations in h may well form the basis of a future experimental
method of correcting G to find Gc.

FIGURE 7 The effect of sy on total G for smax¼ 50 MPa and Gc¼ 1600 J=m2

as predicted from the critical, limiting maximum stress approach.
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The data used in Figures 6 to 8 clearly illustrate some of the com-
plex relationships between Gc and the value of smax when the critical,
limiting maximum stress, smax, approach is adopted. Also, these
results emphasise the crucial feature of this approach in that there are
these two critical parameters, and to ascertain the true value of Gc

requires the value of smax to be determined with some degree of
accuracy.

EXPERIMENTAL EVIDENCE

Peeling of Polymeric Laminates

Introduction
An earlier paper [1] examined the peeling of thin polymer films of (a)

polyethylene (PE) from aluminium-foil substrates, (b) poly(ethylene
terephthalate) (PET) from aluminium-foil substrates, and (c) poly-
(ethylene terephthalate) from polyethylene substrates. The polymers
were all supplied by Du Pont (Wilmington, Delaware, USA). In the
earlier paper the results were analysed via the linear-elastic stiffness

FIGURE 8 Thickness effects as predicted from the critical, limiting max-

imum stress approach; ĜG ¼ s2yh
2E , smax¼ 50MPa, Gc¼ 1600J=m2.
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approach. However, both this approach and the critical, limiting
maximum stress approach will now be considered in order to analyse
the peeling process in order to assess the true, ‘‘characteristic,’’
adhesive fracture energy, Gc. In these calculations the ‘‘ICPeel’’ code
was used (see Appendix A) to solve the previous equations employing
either (a) the simple linear-elastic stiffness approach or (b) the critical,
limiting maximum stress, smax, approach; but the peeling arm was
modelled as a bilinear elastic-plastic material, in accord with the
earlier study [1].

Effect of Peel Arm Thickness, h
A set of values for a polyethylene (Grade PE1) substrate peeling

away from the aluminiumfoil taken from the earlier paper [1] is given
in Table 1, in which the thickness, h, varies from 30mm to 215 mm for a
peel angle of 180�.

First, the analysis of these results was performed on the basis of the
linear-elastic stiffness approach, so no account was taken of the
cohesive zone stress, smax. Thus, the Gc values are calculated using the
value of D=h from Equation (13), which is the linear-elastic stiffness
approach, with E2 ¼ E and, since there was no adhesive layer,
D=h ¼ 0:64. The analysis gives a sensibly constant value of Gc, as can
be seen from Table 1. From Equation (16) the corresponding values of
smax may be determined. They are not constant in value but vary
systematically from 46.7 to 16.5MPa. The yield stress of the poly-
ethylene peel arm was approximately 7MPa, giving a constraint fac-
tor, smax=sy, of between about 6.7 to 2.4. From the results shown in
Table 1, it may also be seen that the value of G=Gc has a peak at about
h ¼ 95 mm, in agreement with the results shown earlier in Figure 8.

Second, these data have been reworked using Equation (19) to
deduce the value of D=h, keeping smax constant, as a function of the

TABLE 1 180� Peel Test Results: Peeling an Aluminium Foil of Thickness h
from a Polyethylene Substrate (Grade PE1)

h (mm) G (J=m)2 Gc (J=m)2 smax (MPa)

30 195 81.1 46.7
45 205 72.3 36.0
60 240 80.2 32.8
75 260 82.4 29.7
105 260 75.7 24.1
135 225 65.1 19.7
165 240 71.0 18.6
215 220 72.8 16.5
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thickness, h, of the peel arm. Thus, we now impose the condition that
for all values of h the value of the stress, smax, must reach a critical,
limiting maximum value for the peel process to occur. The value of Gc

as a function of h is shown in Figure 9 for a range of constant smax

values. Employing a low smax value, e:g:, 15MPa, clearly gives a
substantial variation in Gc; but for smax ¼ 45 MPa the value of Gc is
almost as constant as the value of Gc computed from the linear-elastic
stiffness approach. However, it is noteworthy that the linear-elastic
stiffness approach, where the corresponding value of smax was not
constant, see Table 1, marginally gave the least variation in Gc as a
function of h.

Effect of Peel Angle, u
There are also four sets of data in the earlier paper [1] in which the

peel angle was varied for polyethylene films (using two grades of dif-
ferent molecular weight: PE1 and PE2) peeling away from an alumi-
nium foil and for a poly(ethylene terephthalate) (PET) film peeling
away from a polyethylene substrate (using two different commercial
tie-layer adhesives supplied by Du Pont, Wilmington, Delaware, USA,
to change the level of adhesion at the PET=PE1 interface: T1 and T2).

FIGURE 9 Results for the PE1=A1-foil laminates with various thicknesses h
of PE1 (the peeling arm) with y ¼ 180�.
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In all cases the substrate film was rigidly supported. It should be noted
that the two different grades of polyethylene differed with respect to
their molecular weight, molecular weight distribution, and degree of
orientation, and this led [1] to different mechanical properties for the
two polyethylene films.

First, in general the linear-elastic stiffness approach, i:e:; with D=h
being ascertained via Equation (13), gave constant values of Gc. In all
these sets of test specimens the value of h was constant, so for each set
of test specimens the corresponding values of smax are proportional toffiffiffiffiffiffi
Gc

p
(see Equation (16)). Hence, the corresponding value of smax was

also reasonably constant. Second, to explore the usefulness of the
critical, limiting maximum stress, smax, approach for these different
sets of peel test results, the values of smax were varied relatively
widely, and the variation in Gc with the peel angle, y, noted. Again,
Equation (19) was employed to deduce the value of D=h, keeping smax

constant. Thus, we now again impose the condition that the stress,
smax, must reach a critical, limiting maximum value for the peel pro-
cess to occur, whatever the peel angle.

The results from both approaches are shown in the form of Gc as a
function of y in Figures 10a to 10d. For the polyethylene (PE1) results,
shown in Figure 10a, the most constant value of Gc as a function of
the applied peel angle, y, came from using the critical, limiting
maximum stress, smax, approach when using a smax value of 30MPa.
The linear-elastic stiffness approach yielded a less constant value of
Gc with y and gave a significantly higher value for the resulting smax

of 60MPa. On the other hand, for the other polyethylene (PE2)
laminate (see Figure 10b), both approaches gave an equally good
constant value of Gc as a function of the applied peel angle, y. Further,
the value of smax � 100 MPa, which was obtained using the linear-
elastic stiffness approach, was also the optimum value required to be
employed in the critical, limiting maximum, smax, approach. However,
this value of smax does lead to a relatively high constraint factor,
smax=sy, of about 9.

In Figures 10c and 10d, the two poly(ethylene terephthalate) (PET)
sets of data are for different surface treatments (T1 and T2) and Gc

changes, although the bulk properties of the polymer film do not. The
data in these show more variation of Gc with y than was seen for in the
results for the polyethylene laminates, but the linear-elastic stiffness
approach and, the critical, limiting maximum stress, smax, approach
both yield sensible fits to the data, with approximately the same value
of smax being implied or required, respectively. From Figure 10c, we
have Gc � 50 J=m2 and smax � 400MPa and, from Figure 10d, we have
Gc � 30J=m2 and smax � 300MPa. Now, since for the PET peeling arm
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FIGURE 10 (a) Results for the PE1=A1-foil laminates. (b) Results for the
PE2=A1-foil laminates. (c) Results for the PET=T1=PE1 laminates. (d) Results
for the PET=T2=PE1 laminates.
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FIGURE 10 Continued.
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sy ¼ 91MPa, these values of smax correspond to constraint factors of
about 4.4 and 3.4, respectively.

Peeling of Aluminium-Alloy Epoxy-Bonded T-Peel Test
Specimens

There are also some experimental data available on peeling apart
aluminium alloy strips which were bonded using a relatively tough
epoxy adhesive [10], employing the T-peel test. Aluminium alloy (ISO
Grade 5754: a general purpose, 2.6 to 3.6w=w% magnesium, alumi-
nium alloy) gave constant G (¼ 2P=b) values of 16.8 kJ=m2 and
20.8 kJ=m2 for h ¼ 1 and 2mm, respectively.

The linear-elastic stiffness approach using the ‘‘ICPeel’’ program
was used to deduce the values of Gc and the resulting smax values.
Taking the aluminium alloy arms to be a power-law hardening
material with E ¼ 66 GPa, sy ¼ 85 MPa, and N ¼ 0:22 gave Gc values
of 3.2 kJ=m2 and 3.4 kJ=m2, respectively, with corresponding values of
smax, via Equation (17), of 290MPa for both thicknesses of the peel
arms. If instead the arms are modelled as a bilinear work-hardening
material with E ¼ 66GPa, sy ¼ 130MPa, and with the hardening
coefficient, a ¼ 0:011, the analysis now gave Gc values of 3.1 kJ=m2

and 3.0 kJ=m2, respectively, with corresponding values of smax, via
Equation (17), of 285MPa and 270MPa.

The consistency of Gc is, therefore, good and, indeed, a linear-elastic
fracture-mechanics test (LEFM) based upon a tapered-double canti-
lever-beam joint, using the same adhesive, gave a value
Gc¼ 2.7� 0.4 kJ=m2. (In all these tests the locus of joint failure was
cohesive in the adhesive layer.) Considering the resulting values of
smax, they then represent constraint factors of about 5.5 to 6, when
compared with the yield stress, sya, of the adhesive, which was
approximately 50MPa.

CONCLUSIONS

The analytical methods given here show that it is possible to develop
an elastic-plastic model of the peeling test by adopting either (a) a
linear-elastic stiffness approach or (b) a critical, limiting maximum
stress, smax, approach in order to assess the true, ‘‘characteristic’’
adhesive fracture energy, Gc.

It is very important to note that in the linear-elastic stiffness
approach the term smax is not taken to be a material property and that
the fracture process is controlled by ks and Gc. Indeed, any models
which simply assume such an elastic-stiffness approach to describe a
cohesive zone region at the crack tip do not make any assumptions of a
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critical, limiting maximum value of the stress, smax, for the crack tip
region. Thus, they all yield a single characteristic fracture parameter,
namely Gc. However, the corresponding maximum value of the stress,
smax, that results can be calculated from a knowledge of the value of
Gc. On the other hand, recent cohesive zone models have been devel-
oped which propose a fracture criterion where two parameters are
required to describe the fracture process: namely, Gc and smax. Here
smax is assumed to be a critical, limiting maximum value of the stress
in the damage zone ahead of the crack and is often assumed to have
some physical significance.

Analysis of the peeling of polymer films clearly reveals that both the
linear-elastic stiffness and the critical, limiting maximum stress, smax,
approaches give quite accurate descriptions of the relationship of G
with variations in the thickness of the peel arm and the peel angle,
assuming a constant value of Gc. Indeed, they both yield values of Gc

which are independent of these joint parameters. However, the T-peel
tests on the aluminium alloy=toughened-epoxy provides a more valu-
able insight into the problem, since the value of Gc is known a priori
via a standard LEFM test. Using the T-peel test results, the value of
Gc obtained from the linear-elastic stiffness approach was (a) inde-
pendent of thickness of the peel arm and (b) in good agreement with
the value from the established LEFM tests. Also, it was noteworthy
that the resulting value of smax was a function of the geometry of the
peel test and not, therefore, a characteristic material parameter.

The need to know the value of smax in order to use the critical,
limiting maximum stress, smax, approach is clearly a major obstacle. If
the value of smax is assumed to be the stress which acts in the damage
zone ahead of the crack and to have some physical significance, then it
is more likely that some value might be attached to the smax term.
Thus, a failure analysis of the peel test might then be more readily
undertaken using this two-parameter approach. However, the present
work has revealed no clear pattern as to any physical significance of
the term smax. Indeed, we have found only that it is typically far
greater in value than the yield stress of the peeling arm or adhesive
layer when present. A crucial factor which we have considered in this
respect is the constraint factor, m, by which the yield stress is elevated
for an elastic system with full lateral constraint this is given by

m ¼ 1� v

1� 2v

� �
; ð28Þ

where v is Poisson’sRatio. For the stiffer polymers, v ffi 0:35 to 0.4 so that
the maximum value of m prior to general yielding is typically 2.2 to 3.
However, we have found that the values of smax for the relatively stiff
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PET laminates gave constraint factors of about m¼ 3.5 to 4.5; and for
the epoxy adhesive in the T-peel test, constraint factors of aboutm¼ 5.5
to 6were ascertained. Thus, the experimental results are relativelyhigh
compared with those expected from Equation (28). For the softer
materials, such as polyethylene, v can be as high as 0.45, givingm¼ 5.5
from Equation (28). However, for the polyethylene laminates the pre-
sent work has again shown that the values of smax deduced lead to
constraint factors significantly higher than expected, i:e:, up to m¼ 9.

In summary, either (a) a simple linear-elastic stiffness approach or
(b) a critical, limitingmaximum stress, smax, approach can be used in an
analytical elastic-plastic model of the peel test. Both give values of the
adhesive fracture energy,Gc, which are independent of the details of the
test geometry. However, the need to know an accurate value of smax in
order to use the latter approach is clearly a major obstacle to employing
the critical, limitingmaximum stress, smax, approach. This is especially
relevant when it appears that little physical significance can be readily
attached to the meaning of the smax term. Thus, the main conclusion is
that the former approach, i.e., the simple linear-elastic stiffness
approach, is the preferred option in undertaking analyticalmodelling of
the peel test. However, both approaches are implemented in the
‘‘ICPeel’’ code of the analytical elastic-plastic peel model, which can be
downloaded from our website [8] for other workers to use and explore.

REFERENCES

[1] Kinloch, A. J., Lau, C. C., and Williams, J. G., Int. J. Fract., 66, 45�70 (1994).
[2] Kendall, K., J. Adhesion, 5, 105�117 (1969).
[3] Kim, K. S., and Aravas, N., Int. J. Solids and Struct., 24, 417�435 (1988).
[4] Wei, Y., and Hutchinson, J. W., Int. J. Fract., 93, 315�333 (1998).
[5] Kanninen, M. F., Int. J. Fract., 10, 415�430 (1974).
[6] Williams, J. G., and Hadavinia, H., J. Mech. Phys. Solids, 50, 809�825 (2002).
[7] Tvergaard, V., and Hutchinson, J. W., J. Mech. Phys. Solids, 41, 1119�1135 (1993).
[8] Adhesion, Adhesives and Composites Group, Imperial College, London, website:

http:==www.me.imperial.ac.uk=AACgroup=index.html (2003).
[9] Williams, J. G., and Hadavinia, H., In: 14th European Conference on Fracture—

ECF14, Cracow, Poland, EMAS Publishing, 3, 573�592 (2002).
[10] Georgiou, I., Ivankovic, A., Kinloch, A. J., and Tropsa, V., in 3rd ESIS TC4 Con-

ference on the Fracture of Polymers, Composites, and Adhesives, Les Diablerets,
Switzerland, Elsevier, to be published.

APPENDIX A (SEE FIGURE A1)

A.1 Equation (*)

For the linear-elastic stiffness approach, for the local peel angle, y0,
the relevant equation is given by
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y0 k0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:058þ 1

3

ha

h

E

Ea

svuut �
2eyk0 for k0 < 1

2ey
6k3

0

1þ5k2
0

for k0 < 1;

(

whereas for the critical, limiting maximum stress case for y0 the
relevant equation is given by

y0 k0;Gcð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2þ 1

smax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

EGc

h

rs
:

2eyk0 for k0 < 1

2ey
6k3

0

1þ5k2
0

for k0 > 1:

(

In the linear-elastic stiffness approach the maximum stress, smax, is
not a priori prescribed but merely is a consequence of the analysis. It
may be calculated from

smax ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:058þ 1

3
ha

h
E
Ea

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

EGc

h

r
:

A.2 Power-Law Hardening Material Model

The auxiliary functions, f1ðk0Þ and f2ðk0Þ used in the program are
given as follows:

ð		Þ f2ðk0Þ ¼
f2eðk0Þ for k0 < 2

1
l�N

f2epðk0Þ for k0 > 2
1

l�N;

8<
:

where

f2eðk0Þ ¼
k20
3
;

and

f2epðk0Þ ¼
2

2þN
k1þN
0 þ 21�N

ð2þ 2N �N2Þð1þNÞ k
2�ð1�NÞ2
0 . . .

þ 8

3

ð1�NÞ2ð4þN � 2N2Þ2 3N
1�N

ð1þ 2NÞð2þNÞð2þ 2N �N2Þ
1

k0
� 4

ð1þ 2NÞð1þNÞ k
2N
0

ð	 	 	Þ f1ðk0Þ ¼
0 for 0 < k0 < 1

f1eðk0Þ for 1 < k0 < 2
1

1�N

f1epðk0Þ for k0 > 2
1

1�N

8><
>: ;
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FIGURE A1 Block diagram of the peel algorithm implemented in ‘‘ICPeel’’.
Note that the (*), (**), and (***) equations are listed on the following page.
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where

f1eðk0Þ ¼
k20
3

� 2N

ð1þNÞð2þNÞ k
ð1þNÞ
0 þ 4

3

ð1�NÞ
ð2þNÞ

1

k0
� ð1�NÞ

ð1þNÞ ;

and

f1epðk0Þ ¼
2

ð1þNÞð2þNÞ k
1þN
0 þ 21�N

ð2þ 2N �N2Þð1þNÞ k
2�ð1�NÞ2
0 � � �

þ 1

3

2
3

1�Nð4þN � 2N2Þð1�NÞ2

ð1þ 2NÞð2þNÞð2þ 2N �N2Þ þ
4

3

ð1�NÞ
ð2þNÞ

" #
1

k0

� 4

ð1þ 2NÞð1þNÞ k
2N
0

1�N

1þN

� �
:

The limiting value for the nondimensional curvature during unbend-
ing, k00, (see above) for a power-law hardening material can be
obtained from

k00 ¼ k0 � 2kN0 :

If k00 � 0, then the substrate arms are still unbending elastically at
the end of the peeling process. Therefore, the maximum value of k0
that would guarantee elastic unbending at the end of the process
(k00 ¼ 0) is given by

k0 ¼ 2
1

1�N:

This limiting value for k0 has been used as a switch in the functions
f1ðk0Þ and f2ðk0Þ to ensure that the end of peel process is properly
assessed, either as elastic or elastic-plastic unbending.

A.3 Bilinear Work-Hardening Material Model

The auxiliary functions f1ðk0Þ and f2ðk0Þ are given as follows:

ð		Þ f2ðk0Þ ¼
f2eðk0Þ for k0 < 2 ð1�aÞ

ð1�2aÞ

f2epðk0Þ for k0 > 2 ð1�aÞ
ð1�2aÞ ;

8<
:

where

f2eðk0Þ ¼
k20
3
;

and
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f2epðk0Þ ¼
1

6
að3� 2aÞ2k20 þ 2ð1� aÞ 1� a

2

� �
ð1� 2aÞk0 . . .

þ 8

3

ð1� aÞ3 1� a
2

� �
ð1� 2aÞk0

� 4ð1� aÞ2 1� a
2

� �
;

ð	 	 	Þ f1ðk0Þ ¼
0 for 0 < k0 < 1
f1eðk0Þ for 1 < k0 < 2 ð1�aÞ

ð1�2aÞ

f1epðk0Þ for k0 > 2 ð1�aÞ
ð1�2aÞ;

8><
>:

where

f1eðk0Þ ¼ ð1� aÞ 1

3
k20 þ

2

3k0
� 1

� 	
;

and

f1epðk0Þ ¼
4

3
a ð1� aÞ 1� a

2

� �
� 1

8

� 	
k20 þ 2ð1� aÞ 1� a

2

� �
ð1� 2aÞk0 . . .

þ 2

3

ð1� aÞ
ð1� 2aÞk0

½1� 2a2ð2� aÞ þ 4ð1� aÞ3�

� ð1� aÞ½1þ 2að1� aÞ þ 4ð1� aÞ2�:
Reverse plastic bending will commence at

k00 ¼ ð1� 2aÞk0 � 2ð1� aÞ:

At the end of the peel test, specimen arms are unbending elastically
only if

k0 ¼ 2
ð1� aÞ
ð1� 2aÞ ;

the value of which is used as a switch in the terms f1ðk0Þ and f2ðk0Þ.
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